SEO

Code Interpreter в chatGPT: как его использовать для SEO-задач

Автор: Александр Рахманин, Head of SEO в компании «Вебпрактик» и автор Telegram-канала @seohive

В последних обновлениях ChatGPT для модели GPT-4, был добавлен новый плагин Code Interpreter. Теперь нейронная сеть сама пишет и выполняет код Python непосредственно в интерфейсе чат-бота. Это открывает широкие перспективы для анализа данных, обработки изображений, редактирования кода и множества других задач. 

Более того, интерпретатор предоставляет доступ к функции загрузки файлов, размер которых не превышает 100 МБ. Среди возможностей плагина – создание графиков, карт, визуализация данных, анализ музыкальных плейлистов, формирование интерактивных HTML-файлов, очистка наборов данных и извлечение цветовых палитр из изображений. 

Как воспользоваться Code Interpreter в chatGPT

Для того, чтобы использовать Code Interpreter вам нужен аккаунт chatGPT с подпиской Plus. ChatGPT Plus предлагает ряд мощных функций, включая доступ к модели GPT-4 и использование плагинов. Стоимость этой подписки составляет 20 долларов ежемесячно.

Плагин Code Interpreter в настоящее время находится в стадии альфа-тестирования. Для активации его функциональности необходимо перейти в настройки аккаунта и включить эту опцию.

Я немного протестировал данный инструмент для SEO-задач и хочу поделиться несколькими полезными кейсами его применения в продвижении сайтов.

Анализируем влияния метрик CWV на позицию в Google

Для начала, я покажу, как можно проанализировать зависимость метрик CWV и  позиций сайта в выдаче. Нужно собрать датасет, например, вот такой. Я спарсил топ-10 в Google по небольшой семантике и собрал метрики сайтов через PageSpeed Insights API (как это сделать можно почитать тут). Все, что получилось собрать, я сохранил в файл и отправил в чат:

Сначала просто просим ИИ посмотреть на данные. Далее просим показать корреляции показателей с позициями:

Получаем результат в виде коэффициентов корреляций с комментариями, что они означают:

Но в моей таблице есть данные и по фактическим показателям сайта и по оценкам этих показателей. Например, First Contentful Paint Time в ms и First Contentful Paint в виде оценки от 0 до 100. Так анализировать данные и искать корреляции не совсем корректно, так как оценка напрямую зависит от фактического значения. По-хорошему, нужно сделать 2 таблицы: одну с фактическими значениями, а другую с оценками, и анализировать их отдельно. 

Но давайте попросим это сделать cahtGPT:

ChatGPT сам понял, как нужно разделить показатели и провел анализ корреляции. 

Также данные можно сразу визуализировать:

В этом примере нет корреляций показателей с позицией сайта. Возможно, CWV – это доменный фактор, или на позицию сайта в топ-10 он сильно не влияет. Тут нужно смотреть на других примерах и сравнить CWV с другими метриками, например, с трафиком страницы.

Анализируем метрики конкурентов

Таким же способом можно проанализировать метрики конкурентов. Я нашел таблицу, которую делал с командой для анализа конкурентов в нише онлайн конвертеров файлов. Там много разных метрик сайтов, по которым мы пытались понять, что не хватает нашему сайту:

Источник

Очень полезно периодически делать такие таблицы, чтобы искать новые точки роста. 

А с анализом может помочь Code Interpreter. Сначала просим привести данные к единому виду для дальнейшего анализа. Например, данные из колонки Средняя продолжительность по SimilarWeb chatGPT перевел из формата минуты и секунды в количество секунд, чтобы проще было их анализировать:

Далее смотрим на корреляции с Трафиком и ключами по Ahrefs:

Видим, что есть довольно сильные корреляции с ссылочными метриками. Ahrefs показывает трафик из Google, поэтому такие зависимости нас не удивляют 😊. Но есть зависимость с наличием у конкурентов настроек для конвертаций. Можно задуматься об этом функционале, как о точке роста сайта.

Анализируем ссылочное сайта и трафик

Еще небольшой кейс, как можно применить Code Interpreter для SEO – это сравнение динамики трафика и его ссылочных показателей. Собираем в таблицу динамику по кликам из GSC и данные по ссылочному сайта. Я взял DR и Total referring domains из Ahrefs, но можно использовать любой другой сервис:

Отправляем в чат и просим посчитать корреляции:

Получаем очень слабые корреляции. Но, скорее всего, Google нужно время, чтобы учесть новые ссылки при ранжировании. Поэтому нужно сдвинуть по времени ссылочные показатели относительно трафика:

Теперь корреляции значительно выросли:

Можно попросить просчитать оптимальный период для сдвига данных: 

Но корреляция тут становится уж очень большая, поэтому не думаю, что можно доверять этим данным.

Интересно, какой сдвиг и корреляция получатся у вас, а я продолжу изучать этот момент на других своих проектах 😊

Вывод

Code Interpreter в chatGPT – это не какое-то волшебство. Все тоже самое многие делают сами в Python. Но теперь эти задачи можно делать гораздо быстрее, и порог входа по скилам стал намного ниже. 

Всем советую прочитать книгу Статистика и котики. В ней простым языком объясняются основы статистики, которые могут пригодиться в работе на проектах.

Спасибо за внимание! Буду благодарен за подписку на мой ТГ-канал. В нем я делюсь кейсами использования chatGPT, SEO-кейсами и аналитикой, которые меня заинтересовали.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кнопка «Наверх»
Закрыть
Закрыть